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We introduce a new test of isotropy or uniformity on the circle, based on the
Gini mean difference of the sample arc-lengths and obtain both the exact and
asymptotic distributions under the null hypothesis of circular uniformity. We also
provide a table of upper percentile values of the exact distribution for small to
moderate sample sizes. Illustrative examples in circular data analysis are also given.
It is shown that a “generalized” Gini mean difference test has better asymptotic
efficiency than a corresponding “generalized” Rao’s test in the sense of Pitman
asymptotic relative efficiency.
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1. Introduction

In this article, we introduce a new test of uniformity on the circle based on the Gini
mean difference of the sample arc-lengths. This test extends the Gini mean difference
spacings test on the real line in Jammalamadaka and Goria (2004) to the circular
case. These sample arc-lengths, which are the gaps between successive observations
on the circumference of the circle, are analogous to sample spacings on the real line
and provide a maximal-invariant under rotations so that all invariant tests have to
be based on them. The Gini mean difference compares these arc-lengths between
themselves and is very similar to the Rao’s spacings test which has been used to test
the uniformity of circular data, that compares the gaps to their expected length.

Observations representing directions in two dimensions can be modeled as
random variables taking values on the circumference of the circle. We take this circle
to be the circle with unit radius, and hence a circumference of length 2�. A circular
probability distribution is one whose support is this circumference.

The simple goodness-of-fit problem on the circle consists of testing fit to a single
fixed circular distribution for a given data set. In particular, consider a random
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On the Gini Mean Difference Test 1999

sample of angular measurements �1� �2� � � � � �n with circular distribution function F
defined on the real line with the property that F�x + 2��− F�x� = 1, for all x ∈ �.
We are interested in testing the null hypothesis

H0 � F = F0�

where F0 is a completely specified distribution function.
Without loss of generality, if F is assumed to be continuous as we shall do, by

way of the probability integral transform, the goodness-of-fit problem reduces to
one of testing circular uniformity, i.e., testing the null hypothesis

H0 � F��� =
�

2�
� for 0 ≤ � < 2��

Let 0 ≤ ��1� ≤ ��2� ≤ · · · ≤ ��n� < 2� denote the sample order statistics. The
sample arc-lengths are defined by the random variables

Dk = ��k� − ��k−1�� for k = 1� 2� � � � � n� (1.1)

where we take ��0� = ��n� − 2� to make D1 the natural gap between the first and last
order statistics that straddle the origin. The sample arc-lengths �Dk	 represent the
differences between successive observations on the circumference of the circle, and
remain invariant under the choice of zero-direction or sense of rotation. Tests based
on these sample arc-lengths are the focus here for testing the null hypothesis.

Under the null hypothesis of circular uniformity, the joint distribution of(
D1
2� �

D2
2� � � � � �

Dn

2�

)
is a Dirichlet �
1 = 1� � � � � 
n−1 = 1� 
n = 1� distribution on the unit

�n− 1�-simplex

�n−1 =
{
�t1� t2� � � � � tn−1� ∈ �n−1 � tk ≥ 0� k = 1� 2� � � � � n− 1�

n−1∑
k=1

tk ≤ 1

}
�

By a multivariate transformation, the sample arc-lengths �D1� D2� � � � � Dn� have
probability density function

fD1�D2�����Dn−1
�d1� d2� � � � � dn−1� =

�n− 1�!
�2��n−1

· I
(

n−1⋂
k=1

�0 ≤ dk ≤ 2���
n−1∑
k=1

dk ≤ 2�

)
� (1.2)

Moreover, under the null hypothesis, these sample arc-lengths are exchangeable
random variables and have the same distribution as the spacings from a random
sample of �n− 1� random variables from the Uniform distribution on the line
segment �0� 2��. This suggests that spacings tests on the real line, with some minor
modifications, can be used for circular statistical inference. In fact, spacings tests
are the only general class of goodness-of-fit tests that are directly applicable to both
circular and linear data.

Most common among spacings tests are symmetric spacings tests, i.e., general
test statistics of the form

Vn�g� =
1
n

n∑
k=1

g�nDk�� (1.3)
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2000 Tung and Jammalamadaka

and

Wn�h� =
2

n�n− 1�

∑
1≤i<j≤n

h�nDi� nDj�� (1.4)

where g�·� is a real-valued function satisfying some regularity conditions and
h � �0���× �0��� → � is a symmetric function satisfying some other regularity
conditions. Test statistics of the form Vn�g� are symmetric sum-functions of the
sample spacings (e.g., cf. Pyke, 1965; Sethuraman and Rao, 1970; Rao and
Sethuraman, 1975), and those of the form Wn�h� are U -statistics of the sample
spacings (cf. Tung and Jammalamadaka, 2012). Moreover, as these articles show,
these symmetric spacings tests are known to have asymptotic Normal distributions
under mild conditions.

Among spacings tests of the form Vn�g�, Rao’s spacings test (cf. Rao, 1969,
1976) given by

Jn =
1
n

n∑
k=1

�nDk − 2��
2

= 1
2

n∑
k=1

∣∣∣∣Dk −
2�
n

∣∣∣∣ =
n∑

k=1

(
Dk −

2�
n

)
+
� (1.5)

is one of the more important tests and corresponds to taking g�t� = �t − 2��/2.
Large values of Jn indicate clustering of sample observations or evidence for
directionality, and rejection of the null hypothesis of circular uniformity. Rao’s
test is a powerful statistic that can discriminate between uniform (isotropic)
and concentrated (anisotropic) circular distributions, regardless of whether the
distributions are unimodal or multimodal.

Under the null hypothesis of circular uniformity, the probability density
function of Jn is

fJn�u� =
n−1∑
k=1

(
n
k

)( u

2�

)n−k−1 
k�nu� · �n− 1�! · I�0 ≤ u ≤ 2��1− 1/n��
nk−1�n− k− 1�! � (1.6)

where


k�x� =
1

2��k− 1�!
�∑
j=0

�−1�j
(
k
j

)( x

2�
− j

)k−1

+
� (1.7)

Rao’s test is one of the few spacings-type statistics for which both the exact
and asymptotic distributions are known. A table of upper percentiles of the exact
distribution for Jn was first given in Rao (1976), and extended tables of these critical
values can be found in Russell and Levitin (1995). On the other hand, for almost
all spacings tests, saddlepoint approximations to the null distribution, which give
practically exact values, are available and have been studied in Gatto (2001) and
Gatto and Jammalamadaka (1999).

Under the null hypothesis, Jn has an asymptotic Normal distribution, i.e. in the
limit as n → �,

√
n
(
Jn − e−1

) = √
n

(
1
2

n∑
k=1

∣∣∣∣Dk −
2�
n

∣∣∣∣− e−1

)

D→ N1

(
0� 2e−1 − 5e−2

)
� (1.8)
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On the Gini Mean Difference Test 2001

We introduce the Gini mean difference arc-lengths test in the next section and
obtain both its exact and asymptotic distributions under the null hypothesis. We
also furnish a table of upper percentile values of the exact distribution. Section 3
contains examples of circular data analysis featuring Rao’s test and the Gini mean
difference test. Section 4 discusses the Pitman asymptotic relative efficiencies of a
generalized Rao’s test, and a generalized Gini mean difference test.

2. The Gini Mean Difference Arc-Lengths Test

Comparable to Rao’s arc-lengths test is the Gini mean difference of the sample arc-
lengths, i.e.,

Gn =
2

n�n− 1�

∑
1≤i<j≤n

∣∣nDi − nDj

∣∣
2

= 1
2n�n− 1�

n∑
i=1

n∑
j=1

∣∣nDi − nDj

∣∣ � (2.1)

which corresponds to taking h�u� v�= �u− v�/2 in (1.4), and may also be rewritten as

Gn =
1

n�n− 1�

n∑
i=1

n∑
j=1

(
nDi − nDj

)
+ � (2.2)

The statistic Gn, which compares these sample arc-lengths between themselves, is
of the form Wn�h� and an average over all pairs of absolute pairwise differences of
the sample arc-lengths. The Gini mean difference spacings test was first proposed
in Jammalamadaka and Goria (2004) for testing goodness-of-fit on the real line.
There, under the goodness-of-fit null hypothesis (i.e., linear uniformity on �0� 1�),
they derive both the exact and asymptotic distributions, and show that it has good
performance based on Monte Carlo powers.

Under the null hypothesis of circular uniformity, the sample arc-lengths between
successive observations should be approximately evenly spaced, about �2��/n apart,
and Gn should be close to zero. Large values of Gn resulting from unusually large
arc-lengths or unusually short arc-lengths between observations are evidence for
directionality, and rejection of the null hypothesis of circular uniformity.

Here, we will adapt both the exact and asymptotic null distributions for the
Gini mean difference spacings test on the real line to the case of the unit circle with
circumference of length 2�.

Let U1� U2� � � � � Un−1 be independent Uniform��0� 1�� random variables, and let
�Xk	 = ��2��Uk	 define �n− 1� independent Uniform��0� 2��� random variables. We
define the uniform spacings on the unit interval �0� 1� by the random variables

Tk = U�k� − U�k−1�� for k = 1� 2� � � � � n (2.3)

where 0 ≡ U�0� ≤ U�1� ≤ U�2� ≤ · · · ≤ U�n−1� ≤ U�n� ≡ 1.
Under the null hypothesis, the sample arc-lengths �Dk	 are related to the

uniform spacings �Tk	 by the relation

Dk 	 X�k� − X�k−1� = �2���U�k� − U�k−1�� = �2��Tk� (2.4)
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2002 Tung and Jammalamadaka

Here, as elsewhere, we use 	 to denote the distributional equivalence of quantities
on the left and right hand sides of the symbol. Since

n∑
i=1

n∑
j=1

�Ti − Tj� 	 2
n−1∑
k=1

Uk� (2.5)

n∑
i=1

n∑
j=1

�Di −Dj� 	 �2��
n∑

i=1

n∑
j=1

�Ti − Tj� 	 2
n−1∑
k=1

Xk� (2.6)

Thus, we have

Gn =
1

2n�n− 1�

n∑
i=1

n∑
j=1

�nDi − nDj� 	
Sn−1

n− 1
� (2.7)

where Sn−1 =
∑n−1

k=1 Xk is the sum of �n− 1� independent Uniform��0� 2��� random
variables. The probability distribution of Sn−1 is a variation of the classical Irwin-
Hall Uniform sum distribution, which was first derived by P.S. Laplace in 1814 (cf.
Wilks, 1962; Feller, 1971, Theorem 1, I.9). The probability density function of Sn−1

has the form

fSn−1
�s� = I�0 < s < 2��n− 1��

�2��n−1�n− 2�!
n−1∑
k=0

(
n− 1
k

)
�−1�k�s − 2�k�n−2

+ � (2.8)

and can be derived via the Fourier inversion formula and Cauchy’s integral formula
from complex analysis. The cumulative distribution function of Sn−1 is

FSn−1
�s� = I�0 < s < 2��n− 1��

�2��n−1�n− 1�!
n−1∑
k=0

(
n− 1
k

)
�−1�k�s − 2�k�n−1

+ � (2.9)

Under the null hypothesis of circular uniformity, the probability density
function of Gn is

fGn
�y� = �n− 1� · I�0 < y < 2��

�2��n−1�n− 2�!
n−1∑
k=0

(
n− 1
k

)
�−1�k ��n− 1�y − 2�k�n−2

+ � (2.10)

with cumulative distribution function

FGn
�y� = I�0 < y < 2��

�2��n−1�n− 1�!
n−1∑
k=0

(
n− 1
k

)
�−1�k ��n− 1�y − 2�k�n−1

+ � (2.11)

and characteristic function

�Gn
�t� =

∫ �

−�
eity dFGn

�y� = �n− 1�n−1

(
exp

(
2�it
n−1

)− 1

2�it

)n−1

� �i = √−1�� (2.12)

Under the null hypothesis, Gn has an asymptotic Normal distribution which is
applicable to large sample situations. From the classical Central Limit Theorem, in
the limit as n → �,

√
n

(
1

n− 1

n−1∑
k=1

Uk −
1
2

)
D→ N1

(
0�

1
12

)
� (2.13)
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On the Gini Mean Difference Test 2003

Since Gn 	 Sn−1
n−1 = �2��

n−1

∑n−1
k=1 Uk, we have in the limit as n → �,

√
n�Gn − �� = √

n

(∑n
i=1

∑n
j=1 �nDi − nDj�
2n�n− 1�

− �

)
D→ N1

(
0�

�2

3

)
� (2.14)

Let


 = ��Gn > y
� = 1− FGn
�y
� (2.15)

be the upper-tail probability corresponding to the critical value y
 of the test statistic
Gn. In Table 1, we give the upper percentiles of the exact distribution function for
the statistic Gn for testing the null hypothesis of circular uniformity. The table gives
these critical values, which have been given in degrees for immediate applicability,

Table 1
Upper percentiles (in degrees) of the exact distribution for the Gini mean

difference arc-lengths test Gn

n 
 = 0�01 
 = 0�02 
 = 0�03 
 = 0�04 
 = 0�05 
 = 0�10

2 356.22 352.62 349.02 345.42 341.82 323.82
3 333.92 323.55 315.55 308.77 302.80 279.30
4 312.25 300.32 291.87 285.12 279.40 258.62
5 296.23 284.63 276.75 270.64 265.57 247.67
6 284.59 273.79 266.61 261.07 256.49 240.31
7 275.90 265.81 259.15 254.02 249.78 234.90
8 269.07 259.57 253.32 248.53 244.58 230.74
9 263.51 254.51 248.61 244.10 240.39 227.40
10 258.88 250.31 244.71 240.44 236.92 224.65
11 254.93 246.75 241.41 237.33 233.99 222.32
12 251.53 243.68 238.57 234.67 231.47 220.33
13 248.55 241.00 236.08 232.34 229.27 218.59
14 245.91 238.63 233.89 230.29 227.33 217.06
15 243.56 236.52 231.94 228.46 225.60 215.69
16 241.44 234.61 230.19 226.82 224.06 214.47
17 239.52 232.90 228.60 225.33 222.65 213.37
18 237.77 231.33 227.15 223.98 221.38 212.36
19 236.16 229.89 225.83 222.74 220.21 211.44
20 234.68 228.57 224.61 221.60 219.14 210.60
21 233.32 227.35 223.48 220.55 218.14 209.82
22 232.05 226.21 222.44 219.57 217.22 209.10
23 230.86 225.16 221.46 218.66 216.37 208.42
24 229.76 224.17 220.55 217.81 215.56 207.79
25 228.72 223.24 219.70 217.01 214.81 207.20
30 224.36 219.36 216.13 213.67 211.67 204.74
35 220.99 216.36 213.37 211.10 209.24 202.84
40 218.29 213.96 211.16 209.04 207.30 201.32
45 216.04 211.98 209.34 207.34 205.70 200.07
50 213.87 210.25 207.78 205.90 204.35 199.01
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2004 Tung and Jammalamadaka

for small to moderate sample sizes. If for a given sample size n and significance
level 
, the observed value of the test statistic Gn, say yobs, is greater than the
tabulated critical value y
, i.e., yobs > y
, then we reject the null hypothesis of circular
uniformity.

Note that, under the null hypothesis, the so-called “p-value” or observed
significance level can be calculated by

p = ��Gn > yobs� = 1− FGn
�yobs�� (2.16)

Equivalently, the null hypothesis is rejected whenever p < 
.

3. Illustrative Examples

In this section, we present a couple of circular data analysis examples. We illustrate
how the Gini mean difference test Gn compares with Rao’s test Jn on two classical
circular data sets.

Example 3.1 (Hospital Birth Times Data). Suppose one wants to know whether
or not birth times at a hospital are uniformly distributed throughout the day.
The alternative hypothesis is that there is a time (or times) when births are more
frequent. Table 2 displays data for delivery times collected across several days. This
data can be found in Russell and Levitin (1995).

These observed event times are modeled as realizations from a continuous
circular distribution. The observations can be converted to angles around a circle
in an obvious way, e.g., if we want the angular units in degrees, we use 1 hr. =
360deg.

24 = 15
 and 1 min. = 360deg.
24hr. · 1hr.

60 = 0�25
. Thus, 12�00 am = 0
, 6�00 am = 90
,
12�00 pm = 180
, 6 pm = 270
, 9�15 am = 138�75
, etc.

Table 2
Hospital Birth Times Data

k Delivery Time ��k� Dk

1 12:20 am 5 34
2 12:40 am 10 5
3 12:40 am 10 0
4 12:48 am 12 2
5 1:08 am 17 5
6 5:40 am 85 68
7 6:00 am 90 5
8 6:36 am 99 9
9 6:40 am 100 1
10 7:20 am 110 10
11 10:12 am 153 43
12 3:32 pm 233 80
13 3:40 pm 235 2
14 7:44 pm 296 61
15 10:04 pm 331 35
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On the Gini Mean Difference Test 2005

Rao’s arc-lengths test statistic gives an observed value of J15 = 177 with a p-
value between 0.01 and 0.05. At the 5% significance level, this is sufficient evidence
to reject the null hypothesis of circular uniformity and conclude that there are times
when births are more frequent.

On the other hand, the Gini mean difference arc-lengths test statistic gives an
observed value of G15 = 224�86 with a p-value of 0.053. The results from the Gini
test are borderline significant, and may possibly indicate there are times when births
are more frequent.

Example 3.2 (Homing Pigeon Data). Thirteen homing pigeons were released one
at a time in the Toggenburg Valley in Switzerland under sub-Alpine conditions.
They did not appear to have adjusted quickly to the homing direction, but preferred
to fly in the axis of the valley, indicating a somewhat bimodal distribution. The
vanishing angles are arranged here in increasing order as follows:

20� 135� 145� 165� 170� 200� 300� 325� 335� 350� 350� 350� 355�

Do these homing pigeons have a preferred direction of flight? (This example can
also be found in Jammalamadaka and SenGupta, 2001).

The observed value of Rao’s arc-lengths test statistic is J13 = 161�92 with a
p-value between 0.05 and 0.10 (cf. with the table of upper percentiles of the
distribution for Jn in Rao, 1976). On the basis of Rao’s arc-lengths test, there is not
enough evidence to reject the hypothesis of circular uniformity at the 5% significance
level.

On the other hand, the observed value of the Gini mean difference arc-lengths
test statistic is G13 = 231�67 with an observed significance level or p-value of
p = 0�043. Therefore, the results of the Gini mean difference arc-lengths test are
significant at the 5% significance level and we can reject the null hypothesis of
circular uniformity. On the basis of Gini mean difference arc-lengths test, there is
sufficient evidence that the homing pigeons have a preferred direction of flight.

4. Asymptotic Relative Efficiencies

There are clearly many other spacings tests as well as other uniformity tests for
circular data. There is also considerable literature on comparing their asymptotic
efficiencies. For instance, Pitman asymptotic relative efficiencies (ARE’s) for sum-
functions of spacings have been discussed in Sethuraman and Rao (1970), while
exact Bahadur efficiencies have been studied in Zhou and Jammalamadaka (1989).
In this section, we discuss the Pitman ARE’s of both the Gini mean difference test
Gn and Rao’s test Jn, as well as generalized versions of these statistics.

We define the generalized Rao’s arc-lengths test

Jn�r� =
1
2n

n∑
k=1

�nDk − 2��r � r > 0� (4.1)

and the generalized Gini mean difference arc-lengths test

Gn�r� =
1

2n�n− 1�

n∑
i=1

n∑
j=1

�nDi − nDj�r � r > 0� (4.2)
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2006 Tung and Jammalamadaka

For the special case r = 1, we have Jn�1� = Jn and Gn�1� = Gn. Moreover, the
special case of Jn�2� corresponds to both Gn�2� as well as the statistic

1
n

∑n
k=1�nDk�

2,
which is called the Greenwood statistic.

Broadly speaking, the Pitman ARE of one sequence of tests against another
corresponds to the limit of the inverse ratio of sample sizes required for the two
tests to attain the same power at a sequence of alternatives which converges to
the null hypothesis. In order to study Pitman ARE’s, one needs to obtain the
asymptotic distribution of test statistics under a sequence of close alternatives, which
converges to the null hypothesis. In the circular case, the alternative hypothesis can
be specified by a sequence of distribution functions �Fn�x� � n ≥ 1	 that converges
to the Uniform ��0� 2��� distribution function, which corresponds to the null
hypothesis, in the limit as n → �.

For symmetric spacings tests, the appropriate sequence of close alternatives (cf.
Sethuraman and Rao, 1970; and Rao and Sethuraman, 1975) is obtained by using
the distribution function

Fn�x� =
x

2�
+ Ln�x�

n1/4
� for 0 ≤ x < 2�� (4.3)

where Ln�0� = Ln�2�� = 0. We further assume that Ln�x� is twice differentiable
on the unit interval �0� 2�� and that there exists a function L�x� which is twice
continuously-differentiable with L�0� = L�2�� = 0 and

n1/4 sup
0≤x<2�

�Ln�x�− L�x�� = o�1�� (4.4)

n1/4 sup
0≤x<2�

�L′
n�x�− l�x�� = o�1�� (4.5)

n1/4 sup
0≤x<2�

�L′′
n�x�− l′�x�� = o�1�� (4.6)

where l�x� and l′�x� are, respectively, the first and second derivatives of L�x�.
The asymptotic Normal distributions of test statistics, under both the null

hypothesis and the sequence of close alternatives, can be adapted to the circular
case. However, such an adaptation is not really necessary for finding the Pitman
ARE’s of test statistics, because the Pitman ARE’s in the linear case carry over
nicely to the circular case without much painstaking effort. The Pitman ARE’s of
Jn�r� and Gn�r� were obtained in Tung and Jammalamadaka (2012) in the context
of goodness-of-fit testing on the real line.

Sethuraman and Rao (1970) showed that among spacings tests of the form
Vn�g�, the most asymptotically efficient, i.e., the asymptotically locally most
powerful test (ALMP) is the Greenwood statistic. Tung and Jammalamadaka (2012)
investigated U -statistics based on spacings of the form Wn�h� (see Equation (1.4))
and showed that among such tests, the ALMP test is the Gini mean squared
difference test Gn�2�. However it turns out that this is algebraically the same as the
Greenwood statistic and thus has the same efficiency.

Suppose the Pitman ARE of Jn�2� and Gn�2� is taken to be 1. The following
Table 3, taken from Tung and Jammalamadaka (2012), lists the Pitman ARE
of Jn�r� and Gn�r� with respect to various choices of r > 0. It is seen that the
Pitman ARE’s of Jn�1� and Gn�1� are 0.572654 and 0.75, respectively, thus the Gini
mean difference test Gn�1� is asymptotically more efficient than Rao’s test Jn�1�.
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Table 3
Pitman asymptotic relative efficiencies for Jn�r� and Gn�r�

r Generalized Rao Generalized Gini

1 0�572654 0�75
3/2 0�892135 0�946889
2 1 1
5/2 0�93921 0�96137
3 0�818649 0�867857
4 0�550562 0�615384

Moreover, it is also seen that the generalized Gini mean difference test Gn�r� is more
Pitman efficient than the generalized Rao’s test Jn�r�, except for the case r = 2, when
both tests Gn�2� and Jn�2� correspond to the Greenwood statistic and have a Pitman
ARE of 1.

5. Conclusion

We introduced a new test of uniformity on the circle based on the Gini mean
difference of the sample arc-lengths, and obtained both its exact and asymptotic
distributions under the null hypothesis. We provided a table of upper percentile
values for this test, which will be useful to applied scientists employing it for circular
data analysis. This new test extends the use of one by Jammalamadaka and Goria
(2004) from the linear case to the circular case. On the basis of Pitman asymptotic
relative efficiency, the generalized Gini mean difference test is asymptotically more
efficient than the generalized Rao’s test.
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